CALIBRATION DATA MEASUREMENTS

Parameter	Symbol	Units	Tolerances
Barometric Pressure (corrected)		kPa ◦ C	±.34 kPa ±.28° C
Pressure drop between the inlet and throat of metering venturi.	EDP	in. H ₂ O	±.05 in H ₂ O
Air flow	$Q_{\rm S}$	m³/min	±.5 percent of NIST value
CFV inlet depression	PPI	(kPa)	±.055 kPa
Temperature at venturi inlet	$T_{ m V}$	l ∘ c ′	±2.22° C

- (4) Set up equipment as shown in Figure 6 in Appendix B of this subpart and eliminate leaks. (Leaks between the flow measuring devices and the critical flow venturi will seriously affect the accuracy of the calibration.)
- (5) Set the variable flow restrictor to the open position, start the blower, and allow the system to stabilize. Record data from all instruments.
- (6) Vary the flow restrictor and make at least eight readings across the critical flow range of the venturi.
- (7) *Data analysis.* The data recorded during the calibration are to be used in the following calculations:
- (i) Calculate the air flow rate (designated as Q_s) at each test point in standard cubic feet per minute from the flow meter data using the manufacturer's prescribed method.
- (ii) Calculate values of the calibration coefficient for each test point:

Where:

 Q_s =Flow rate in standard cubic meters per minute, at

$$K_{v} = \frac{Q_{s} \sqrt{T_{v}}}{P_{v}}$$

the standard conditions of 20° C, 101.3 kPa.

 $\begin{array}{lll} T_{\rm v}\!\!=\!\! Temperature \ at \ venturi \ inlet, \ ^{\rm o}\!K. \\ P_{\rm v}\!\!=\!\! Pressure & at \ venturi \ inlet, \\ kPa\!\!=\!\! P_B \!-\! P_{PI} \end{array}$

Where:

$$\begin{split} P_{PI} = & Venturi \ inlet \ pressure \ depression, \\ & kPa. \end{split}$$

(iii) Plot K_v as a function of venturi inlet pressure. For choked flow, K_v will have a relatively constant value. As pressure decreases (vacuum increases), the venturi becomes unchoked and K_v decreases. (See Figure 7 in Appendix B to Subpart D.)

- (iv) For a minimum of eight points in the critical region, calculate an average K_v and the standard deviation.
- (v) If the standard deviation exceeds 0.3 percent of the average $K_{\rm v}$, take corrective action.
- (e) CVS system verification. The following "gravimetric" technique may be used to verify that the CVS and analytical instruments can accurately measure a mass of gas that has been injected into the system. (Verification can also be accomplished by constant flow metering using critical flow orifice devices.)
- (1) Obtain a small cylinder that has been charged with 99.5 percent or greater propane or carbon monoxide gas (CAUTION—carbon monoxide is poisonous).
- (2) Determine a reference cylinder weight to the nearest 0.01 grams.
- (3) Operate the CVS in the normal manner and release a quantity of pure propane into the system during the sampling period (approximately five minutes).
- (4) The calculations are performed in the normal way except in the case of propane. The density of propane (0.6109 kg/m³/carbon atom) is used in place of the density of exhaust hydrocarbons.
- (5) The gravimetric mass is subtracted from the CVS measured mass and then divided by the gravimetric mass to determine the percent accuracy of the system.
- (6) Good engineering practice requires that the cause for any discrepancy greater than \pm two percent must be found and corrected.

§ 90.425 CVS calibration frequency.

Calibrate the CVS positive displacement pump or critical flow venturi following initial installation, major

§ 90.426

maintenance, or as necessary when indicated by the CVS system verification (described in §90.424(e)).

§ 90.426 Dilute emission sampling calculations—gasoline fueled engines.

(a) The final reported emission test results must be computed by use of the following formula:

$$A_{WM} = \frac{\displaystyle\sum_{i}^{n} \left(W_{i} \cdot WF_{i}\right)}{\displaystyle\sum_{i}^{n} \left(P_{i} \cdot WF_{i}\right)} \cdot K_{H_{i}}$$

Where:

A_{WM}=Final weighted brake-specific mass emission rate for an emission (HC, CO, CO₂, or NO_X) [g/kW-hr]

W_i=Average mass flow rate of an emission (HC, CO, CO₂, NO_X) from a test engine during mode i [g/hr]

WF_i=Weighting factor for each mode i as defined in §90.410(a).

P_i=Gross average power generated during mode i [kW], calculated from the following equation,

$$P_i = \frac{2\pi}{60,000} \times \text{speed} \times \text{torque}$$

Where:

speed=average engine speed measured during mode i [rev./minute]

torque=average engine torque measured during mode i [N-m]

 $K_{\rm Hi}{=}{\rm NO_X}$ humidity correction factor for mode i. This correction factor only affects calculations for tion factor only affects calculations for ${\rm NO_X}$ and is equal to one for all other emissions. $K_{\rm Hi}$ is also equal to 1 for all two-stroke engines.

(b) The mass flow rate, W_i in g/hr, of an emission for mode i is determined from the following equations:

$$W_i = Q_i \cdot Density \cdot \left(\frac{C_{Di} - C_{Bi}}{10^6} \cdot \left(1 - \frac{1}{DF_i} \right) \right)$$

Where:

 Q_i =Volumetric flow rate oandard conditions [m³/hr at STP].

Density=Density of a specific emission (Density_{HC}, Density_{CO}, Density_{CO2}, Density_{NOx}) [g/m³].

 DF_i =Dilution factor of the dilute exhaust during mode i.

 C_{Di} =Concentration of the emission (HC, CO, NO_X) in dilute exhaust extracted from the CVS during mode i [ppm].

 C_{Bi} =Concentration of the emission (HC, CO, NO_X) in the background sample during mode i [ppm]

during mode i [ppm].

STP=Standard temperature and pressure. All volumetric calculations made for the equations in this section are to be corrected to a standard temperature of 20° C and 101.3 kPa.

(c) Densities for emissions that are to be measured for this test procedure are:

 $\begin{array}{l} Density_{HC} = 576.8 \ g/m^3 \\ Density_{NOX} = 1912 \ g/m^3 \end{array}$

Density_{CO}=1164 g/m³ Density_{CO2}=1829 g/m³

(1) The value of Density $_{HC}$ above is calculated based on the assumption that the fuel used has a carbon to hydrogen ratio of 1:1.85. For other fuels Density $_{HC}$ can be calculated from the following formula:

$$Density_{HC} = \frac{M_{HC}}{R_{STP}}$$

Where:

 M_{HC} =The molecular weight of the hydrocarbon molecule divided by the number of carbon atoms in the molecule [g/mole]

 R_{STP} =Ideal gas constant for a gas at STP=0.024065 [m³-mole].

(2) The idealized molecular weight of the exhaust hydrocarbons, i.e., the molecular weight of the hydrocarbon molecule divided by the number of carbon atoms in the molecule, M_{HC} , can be calculated from the following formula:

$$M_{HC} = M_C + \alpha M_H + \beta M_O$$

Where:

 M_C =Molecular weight of carbon=12.01 [g/mole]

 M_H =Molecular weight of hydrogen=1.008 [g/mole]

 M_O =Molecular weight of oxygen=16.00 [g/mole]

 α =Hydrogen to carbon ratio of the test fuel